
Parallel Computation of Ax and ATx

V. Venkatakrishnan 1,

Report RNR-93-001, February 1993

NAS Systems Division

Applied Research Branch

NASA Ames Research Center, Mail Stop T045-1

Moffett Field, CA 94035

February 2, 1993

Abstract

This paper describes how to carry out the matrix vector

multiplications Ax and ATx on parallel computers where A

is a sparse matrix arising from the discretization of partial

differential equations. Two partitionings of the sparse ma-

trix suitable for parallel computers are discussed. They arise

from interpreting the sparse matrix as a graph. One of the

techniques partitions the matrix graph by finding edge sepa-

rators. The other technique partitions the graph by finding

vertex separators. We claim that in either case comput-

ing ATx is no more complex than computing Ax. Results

from the implementation of the matrix vector multiplica-

tions on the Intel iPSC/860 are presented which substanti-

ate the claim. Results from an efficient implementation on

the Cray Y/MP-1 are also presented for comparison.

Csubmitted to The International Journal of High Speed Computing)

1Applied Research Branch, Mail Stop T045-1, Numerical Aerodynamic Sim-
ulation (NAS) Systems Division, NASA Ames Research Center, Moffett Field,
CA 94035. The author is an employee of Computer Sciences Corporation. This
work was funded under contract NAS 2-12961.



Parallel computation of Ax and ATx

V. Venkatakrishnan I ,

Abstract

This paper describes how to carry out the matrix vector multiplications Az and AT;r. on

parallel computers where A is a sparse matrix arising from the discretization of partial differential
equations. Two partitionings of the sparse matrix suitable for parallel computers are discussed.

They arise from interpreting the sparse matrix as a graph. One of the techniques partitions

the matrix graph by finding edge separators. The other technique partitions the graph by

finding vertex separators. We claim that in either case computing ATx is no more complex

than computing Az. We discuss the data structures necessary to carry out the matrix-vector

products for both implementations. Results from the implementation of the matrix vector

multiplications on the Intel iPSC/860 are presented which substantiate the claim. Results from

an efficient implementation on the Cray Y/MP-1 are also presented for comparison.

1 Introduction

The problem of computing a sparse matrix vector multiplication Az on parallel computers is an

important one. It arises explicitly in many contexts, e.g. when using iterative methods such as

conjugate gradient, GMRES [1] etc. in the solution of linear systems. In finite element and finite

difference methods, sparse linear systems arise when implicit methods are used. In addition, the

computation involved in many explicit methods can be cast as a sparse matrix vector multiplication.

This point of view is particularly useful when dealing with finite element or unstructured grids.

Some methods for solving linear systems, such as the biconjugate gradient method [2], also require

the formation of the transpose matrix vector product ATx.

Despite its ubiquity, there is no consensus on how best to carry out the sparse matrix vector

multiplications on parallel computers. The purpose of this paper is to show that there are efficient

ways to compute Ax and ATx. It has been speculated in literature that algorithms which require

ATx are not suitable for parallel computers. A number of recently developed iterative methods for

solving nonsymmetric linear equations, such as the Conjugate Gradients Squared method [3], have

been designed explicitly to avoid the ATx operation. _ _ (_-_j_, /_ "__

A row-oriented representation for the matrix A is chosen for computing Ax and ATx. There is a

duality between these kernels and the choice of a row-oriented or a column-oriented representation

for A. The code for computing ATx using the row-oriented data structure is identical to that for

computing Ax with the column-oriented data structure and vice versa.

One underlying assumption made in this paper is that the sparse matrix arises from using a

bounded stencil in some physical application such as the solution to a partial differential equation.

The matrices possess structural symmetry, i.e. if node 1 is connected to node 2, node 2 is connected

to node 1 as well. In other words, the sparse matrix graphs that will be considered in this work are

generalizations of grid graphs. Whereas in a grid graph each vertex is only connected to its nearest

neighbors, here we relax this notion and allow a vertex to be connected in addition to vertices that

are distances 2 and higher from the vertex. We shall refer to this broader class of graphs still as

generalized grid graphs. Examples of grid graphs are triangular grids, quadrilateral grids and grids

composed of a mixture of triangles and quadrilaterals and their counterparts in three dimensions.

1Applied Research Branch, Mail Stop T045-1, Numerical Aerodynamic Simulation (NAS)Systems Division, NASA
Ames Research Center, Moffett Field, CA 94035. The author is an employee of Computer Sciences Corporation. This
work was funded under contract NAS 2-12961.



2 Definitions

Grid graphs imply spatial locality. This locality is exploited first by partitioning the vertices.

The matrix partitions are derived from these vertex partitions by assigning rows of the matrix

to processors. Interprocessor communication is required for accessing the nonlocal entries of the

matrix.

A concept that follows from the notion of a grid graph is a dual graph. The subgraph consisting

of only edges to nearest neighbors can be considered to delineate regions or cells in space. The

dual graph for a this subgraph is formed by representing each cell as a vertex and each bounding

face/edge by an edge.
Given a sparse m × n matrix, its adjacency graph is represented as a set of Max (re, n) points

(vertices) which are connected by a set of lines (edges) with orientations. Every off-diagonal entry

in the sparse matrix corresponds to a directed edge in the graph where a directed edge is an

edge with an orientation. The orientation of the edge is from the the vertex corresponding to

the row to the vertex corresponding to the column of the off-diagonal entry. If the matrix has a

symmetric structure, the orientations of the edges are of no consequence and the resulting graph

is an undirected graph. Figure 1 represents an unstructured grid composed of triangles. It can

also be interpreted as the adjacency graph corresponding to the matrix with a symmetric structure

shown in Figure 2.

A cell partitioning is an assignment of cells to processors. This is accomplished by finding

vertex separators which form the interpartition boundary. A vertex separator is a set of vertices in

the adjacency graph whose removal leaves the graph disconnected. In Figure 3, a vertex separator

is shown by the darkened fine. Figure 3 also shows a local numbering of vertices assigned to each

processor. Note that under this partitioning scheme, the vertices on the separator are duplicated.

For instance, vertex 4 of processor 0 and vertex 2 of processor 1 represent the same physical vertex.

A vertex partitionin 9 is an assignment of vertices to partitions accomplished by computing

edge separators. An edge separator is the set of edges of the adjacency graph with one endpoint in

one vertex partition and the other endpoint in another partition. Figure 4 shows a 2-way vertex

partition of the graph of Figure 1 and an edge separator. Vertices 1,2,3 and 4 are assigned to

processor 0 and vertices 5, 6 and 7 are assigned to processor 1. In Figure 4, the local numbering

of vertices is represented as a tuple, the first entry corresponds to the numbering for processor

0 and the second, for processor 1 for all the vertices incident to the edges of the edge separator.

Communication takes place across two rows of vertices on either side of the edge separator. These

vertices are formed as the union of vertices adjacent to the edge separator. The lengths of the two

fists on two adjacent partitions are not equal in general.

An edge separator can be found for an adjacency graph by a number of techniques described

in [4]. The smallest vertex separator can be obtained from the edge separator by several methods

also described therein. In the special case of grid graphs, it is possible to compute the vertex

separators directly by partitioning the dual graph. Assigning vertices to partitions in the dual

graph is equivalent to assigning ceils in the original graph.

It is shown in this paper that when the of matrix graph is partitioned either by vertices or by

cells, computing ATx is no more complex than computing Ax. This claim is substantiated with

implementation results on the Intel iPSC/860. The trivial way to perform ATx is to explicitly

form the transpose and carry out the matrix-vector multiplication. This is unacceptable for two

reasons. The primary reason is that the transpose procedure involves considerable data motion and

is expensive. A secondary reason is that the memory requirements are doubled, which cuts down

the size of the problem that can be solved. Depending on whether cells or vertices are partitioned,

different data structures have to be employed, which are discussed later.

2



X x X X

x X X X

x x x X

x x x x x x

X X X

X X

X

X

X

Figure 1: An unstructured grid composed of triangles.
7

2

6

] 3

Figure 2: Matrix corresponding to Figure 1.

If there are k degrees of freedom associated with a vertex, the sparse matrix is viewed as a block

sparse matrix, where the entries are k × k blocks. In our application the matrices arise from the

solution of two-dimensional Euler equations and therefore, each vertex has four degrees of freedom.

Hence, all the operations are carried out on submatrices of size 4 × 4. On a parallel computer, such

as the Intel iPSC/860, one obtains better performance by adopting this viewpoint since there is

better cache utilization compared to treating the same matrix entries as scalars.

3 Partitioning of the graph

The mapping of partitions to processors is not a crucial issue as discussed in [5] and therefore a naive

mapping of partitions to processors is assumed. Since the partitions are generated recursively the

naive assignment consists of mapping partition 0 to processor 0, partition 1 to processor 1 and so on.

Therefore, throughout this paper, the words partition and processor will be used interchangeably.

The partitioning step determines the assignment of vertices/cells to processors based on the grid

graph. After partitioning, global values of the data structures required to define the grid graph are

given local values within each partition. We thus dispense with any references to global indices.

Additionally, each local data set contains the information a processor requires for communication

at its interpartition boundaries. In our application, the formation of the matrix and the vector is

carried out on the parallel computer itself and therefore is not included in the preprocessing. The

partitioning and preprocessing are currently done on a workstation.

The recursive spectral partitioning algorithm of Simon [6] is used to partition the grid graphs.

Depending on whether cells or vertices are partitioned, different algorithms are obtained for com-

puting the matrix vector product and the transpose matrix vector product. Desirable features of

the partitioner are to ensure load balance and to minimize communication costs. The computa-



4

Processor 0 Processor 1

Figure 3: 2-way cell partitioning with a vertex separator.

6,2
3

7,3

2;_r(_cessor 0 _' 1profcessor 1

Figure 4: 2-way vertex partitioning with an edge separator.

tional load is proportional to the total number of nonzero entries in the partitioned matrix. In

terms of the grid graph, the load is proportional to the sum of the number of vertices and twice

the number of edges. However, the recursive spectral partitioning strategy only guarantees nearly

equal number of vertices/cells and this only guarantees rough load balance. As mentioned earlier,

for vertex partitioning the grid that is partitioned is the grid graph whereas for cell partitioning it

is the dual graph.

The spectral algorithm of Pothen et al. [4] derives an edge separator from the eigenvector cor-

responding to the second smallest eigenvalue of the Laplacian matrix associated with the graph.

The Laplacian matrix consists of the degree of each vertex as the diagonal entry and -1 for each

of its neighbors. Pothen et al. [4] have also shown that the separators produced by this algorithm

are shorter than those produced by nested dissection. In the present context, separators are of

interest since they form the interpartition boundaries. Simon [6] has applied this and other par-

titioning algorithms to a variety of two-dimensional and three-dimensional problems, arising from

finite elements and has shown that the spectral technique yields better partitions in that it pro-

duces sub-domains with shorter boundaries. The spectral technique produces uniform, sometimes

disconnected sub-domains with short boundaries. Theoretical results by Fiedler (summarized in

[4]) show that one of the two sub-domains formed by the spectral partitioning is always connected.

Spectral partitioning results in fewer shorter messages and reduced communication cost. This was

observed by Venkatakrishnan et al. [5] who found that the spectral partitioning reduced commu-

nication costs in comparison with other partitioning strategies in an explicit unstructured Euler

solver on the Intel iPSC/860.



4 Data structures

The information required for communication at the interpartition boundaries is i)recomputed using

sparse matrix data structures. The data structures required for cell partitioning are discussed first.

The interpartition boundaries are composed of vertex separators. For simplicity, only a nearest-

neighbor grid graph is considered. The data structures can be generalized to other grid graphs

with larger stencils by employing wider vertex separators. Neighboring subgrids communicate to

each other only through their interpartition boundary vertices (IBV's) which are shared by the

neighboring partitions. The following data structures for each processor facilitate communication

across the interpartition boundaries in a general manner:

nadjproc -- no. of adjacent processors

iadjproc -- list of adjacent processors -- length nadjproc

ibv -- pointers to the cumulative number of IBV's in common with the adjacent processors --

length nadjproc + 1

nbv -- number of boundary vertices in common with processor iadjproc(.). This can be derived

from ibv and is not stored; nbv(j) = ibv(j+l) - ibv(j)

nintbv(.,1) -- Local indices on current processor -- length ibv(nadjproc+l)-i

nintbv(.,2) -- Local indices on adjacent processor -- length ibv(nadjproc+l)-i

For more details on these data structures, we refer the reader to [5].

With vertex partitioning, the interpartition boundaries consist of edge separators. Here, the

IBV's need to be treated differently. The interpartition boundaries now consist of two rows of

vertices. Referring to Figure 4, processor 0 receives data from 3 vertices of processor 1 and processor

1 receives data from 3 vertices of processor 0. Therefore, the data structures for each processor

consist of:

nadjproc -- no. of adjacent processors

iadjproc -- list of adjacent processors -- length nadjproc

ibvs -- pointers to the cumulative number of IBV's in common with the adjacent processors for

sending messages -- length nadjproc + 1

ibvr -- pointers to the cumulative number of IBV's in common with the adjacent processors for

receiving messages -- length nadjproc + 1

nbvs -- number of boundary vertices in common with processor iadjproc(.) for sending messages.

This can be derived from ibvs and is not stored; nbvs(j) = ibvs(j+l) - ibvs(j)

nbvr -- number of boundary vertices in common with processor iadjproc(i) for receiving messages.

This can be derived from ibvr and is not stored; nbvr(j) = ibvr(j+l) - ibvr(j)

nintbvs(.,1) - Local indices on current processor for sending -- length ibvs(nadjproc+ 1)-1

nintbvs(.,2) - Local indices on adjacent processor for receiving -- length ibvs(nadjproc+l)-i

nintbvr(.,1) - Local indices on current processor for receiving -- length ibvr(nadjproc+ 1)- 1

nintbvr(.,2) - Local indices on adjacent processor for sending -- length ibvr(nadjproc+l)-I



5 Uniprocessor implementation of Ax and ATx.

Details of the implementation of Ax and ATx on a single processors of the Intel iPSC/860 and

on the Cray Y/MP-1 are discussed in this section. The implementation on the Cray Y/MP-1 is

significantly different from that on a single processor of an Intel iPSC/860. The Cray Y/MP is

a vector computer and an efficient implementation should have good vector lengths. The data

structure used to store the matrix is edge-based. Associated with each edge are the vertices, nl

and n2 incident to the edge stored in array nd(.,2). The two entries which contain the influence

of n2 on nl and nl on n2 are stored in array a (.,2). The diagonal entries are stored separately

as array diag(.). The matrix vector multiplication is carried out by looping over the edges of

the undirected graph for the off-diagonal contributions followed by a loop over the nodes for the

diagonal contributions. Vectorization is achieved by coloring the edges of the graph. For simplicity,

codes are presented assuming one degree of freedom per vertex. The scalar multiplication should be

replaced by a local matrix-vector multiplication when multiple degrees of freedom are associateed

with a vertex. In addition, the transpose problem involves a local k × k matrix transposition before

multiplication by the vector, where k is the number of degrees of freedom at each vertex. The

pseudocodes for computing Ax is given below:

nl =

n2 =

y(nl)

y(n2)
enddo

Program mat_mul_cray

Initialize : y(i) -- O, i = 1, n

do k = 1, kedge

nd(k,1) : vertex 1 incident to the edge k

nd(k,2) : vertex 2 incident to the edge k

= y(nl) + a(k,1)*x(n2)

= y(n2) + a(k,2)*x(nl)

do j -- 1, jnodes

y(j) = y(j) + diag(j)*x(j)
end do

end

The code for computing ATx is only slightly different:

nl =

n2 =

y(n2)

y(nl)
enddo

Program t ranspose_mat_m ul_cray

Initialize : y(i) ---- 0, i -- 1,n

do k -- 1, kedge

nd(k,1) : vertex 1 incident to the edge k

nd(k,2) : vertex 2 incident to the edge k

----y(n2) + a(k,1)*x(nl)

= y(nl) + a(k,2)*x(n2)

do j -- 1, jnodes

y(j) = y(j) + diag(j)*x(j)
end do

end

Table 1 presents the best Cray Y/MP-1 timings for three problem sizes with 4 x 4 submatrices.

The implementations run at about 122-125 megaflops, determined using the Cray hardware perfor-

mance monitor. The original data structure which is suitable for a cache-based machine such as the



Intel iPSC/860hasthe 4x 4 submatrixasthefirst two dimensionsandtheslowestrunningdimen-
sionovertheedges/nodes.Forthe CrayY-MP, therewasa substantialimprovementof about20%
in performancebyswitchingthefastestrunningdimensionto be theovertheedges/nodesandthe
4 x 4 submatricesbeingthelast twodimensionsin themulti-dimensionaiarrays.Theimprovement
is mainlyduethe eliminationof bankconflictswhichoccurwith theoriginaldatastructure.

Table1: Performance of Az and ATz on the Cray Y/MP-1.

Problem size

(no. of vertices)

Ax ATx

Time (10 -_ secs. Time (10 -_ secs.
843 0.078 0.080

6019 1.043 1.056

15606 2.803 2.825

The i860, on the other hand, is a cache-based microprocessor so that locality is of paramount

importance even on a single processor. The edge-based data structure used on the Cray is not

suitable. The usual row-oriented data structure is used to store the matrix in the ia, ja, a format,

where in(.) contains the cumulative pointers to the start of each row, ja(.) contains the column

number and a(.) contains the entry. The pseudocodes for computing Ax and ATx are the same as

the ones given in the next two sections except that there is no communication phase.

Table 2: Performance of Ax and ATx on a single processor of the Intel iPSC/960.

Problem size

(no. of vertices)

Row-oriented;

last dimension

over nodes

Row-oriented;
first dimension

over nodes

Edge-based;
last dimension

over nodes

Ax

Time (10 -_ secs.

1.626

1.640

1.878

A'.l'x

Time (10 -'_ secs.

1.493

1.490

1.917

Results are presented in Table 2 from experiments on a small problem with 843 vertices as this

is the only problem of the three considered that fits in one processor of the Intel iPSC/860. All the

computations are carried out in 64-bit arithmetic. All the codes are compiled with release 2.0 of

the Portland Group compiler with "-04 -Knoieee" options. The best performance is obtained with

the row-oriented data structures. The edge-based data structure is about 15% worse for Ax and

about 30% worse for ATx. Switching the fastest running dimension to be the over the nodes and

the 4 x 4 submatrices being the last two dimensions did not have much impact. This is surprising

since locality is lost by employing such a data structure. The best uni-processor implementation

of Ax runs at about 5.9 megaflops and ATx runs at about 6.5 megaflops in 64-bit arithmetic, all

megaflops being Cray Y/MP equivalents. These are obtained by dividing the elapsed times on the

Cray and the Intel and multiplying by the Cray megaflop rates. Thus computing ATx is faster than

computing Ax. This is due to the fact that with ATx a scatter operation is employed, whereas

with Ax a gather operation is used.



6 fax and ATx with cell partitioning.

This section describes the steps involved in performing the matrix vector multiplications Ax and

ATx when the cells are assigned to partitions and the interpartition boundaries are composed of

vertex separators. The algorithm is presented by considering a simple example. Referring back to

the 2-way partition of a simple graph shown in Figure 3, we observe that vertices 3,4 and 5 for

processor 0 and vertices 1, 2 and 3 for processor 1 are identical and represent the same physical

vertices. Central to our strategy is the exchange_sum phase which combines the values of all the

vertices over all processors that represent the same physical vertices. For example, referring to

Figure 3, if processor 0 has x4 at vertex 4 and processor 1 has x2 at vertex 2, at the end of the

combine phase, processors 0 and 1 have each the value x4 + x2 at vertices 4 and 2, respectively.

This procedure is easily generalized to handle the case when multiple partitions meet at a vertex.

Under the partitioning scheme, the matrix is itself decomposed into multiple components. Fig-

ure 5 illustrates the two components corresponding to Figure 3. Each processor contains five

vertices and hence, a 5 × 5 square matrix. The x's refer to entries that are completely local to a

processor. The 3 × 3 matrix corresponding to the vertices on the vertex separator is split between

the two processors. The symbols other than the x's thus represent partial entries and the full

entries are obtained by summing the corresponding partial entries. This splitting is not unique. In

our application these entries arise from each processor 'seeing' only a portion of the control volume

for the vertices comprising the vertex separator and the splitting is therefore unique.

X X X X

X X X X

x 0 •

x x • [] A

x _ h

C) •

• []

X X

X

A x

A x

X

X X

X

X

X

X

Processor 0 Processor 1

Figure 5: Decomposition of the matrix under the partitioning of Figure 3.

In what follows, it is assumed that the values of x at the corresponding image points are

identical. This is a reasonable assumption since x is conceivably formed by some procedure that

involves communication which ensures this property. For instance, x itself may be the result of a

matrix vector multiplication. The computation of Ax in words can be summed up as: For every

vertex, sum the non-zero entry multiplied by the value of the vector component corresponding to

the entry's column number. The code for matrix vector product Ax is given below:

Program mat_mul_cell_part

Initialize : y(i) -- O, i ---- 1,n

do j---- 1, n

do 1 = ia(j),ia(j+l)-i

y(j) -- y(j) -k a(l)*x(ja(l))
enddo

enddo

call exchange_sum (y_n) : add y values at interpartition boundaries

end



The first step performs the local computations. At the end of this step, the IBV's hold only

partial contributions. The communication phase combines the partial information and yields the
full information at the IBV's.

The computation of ATx in words can be summed up as: For every vertex, compute the

product of the entire row by the vector component of the vertex and scatter this vector. Sum all

these scattered vectors to get the result. The code for computing ATx is given below:

Program transpose_mat_mul_cell_part

Initialize : y(i) -- O, i -----1,n

doj_- 1, n

do 1 -- ia(j),ia(j_-l)-i

y(ja(1))----y(ja(1)) -b a(1)*x(j)

enddo

enddo

callexchange_sum (y,n) : add y values at interpartition boundaries

end

Once again the first step performs the local computations. The second step combines the values

at the interpartition boundaries. Thus, we observe that the only difference between computing Ax

and ATx is that the former employs a gather operation and the latter, a scatter operation. The

communication required is identical.

Results are presented from our implementation of Ax and ATx for various problem sizes. The

matrices in our examples all arise from using triangular grids to solve the Euler equations. Table 3

summarizes our results as the number of processors is varied for three problem sizes. Since the two

larger problems do not fit on one processor of the Intel iPSC/860, the scaled speedups are based

on the timings obtained with the smallest number of processors required to solve the problems.

Elapsed times over ten trials are presented for AxandATx. Notice in Table 3, that Ax performs

slightly worse than ATx. This is true even in the absence of communication on one processor.

Table 3: Performance of Ax and ATx on the Intel iPSC/860.

Problem size

(no. of vertices)

843

6019

No. of procs. Ax

Time

(10 -2 secs.)

1.626

0.589

5.887

8 3.275

16 1.920

A'.l'x

Scaled Time Scaled

speedup (10 -2 secs.) speedup
1.00 1.493 1.00

2.76 0.547 2.73

1.00 5.466 1.00

1.80 3.031 1.80

3.07 1.799 3.04

32 1.252 4.70 1.174 4.65

64 0.870 6.77 0.821 6.66

15606 8 8.128 1.00 7.490 1.00

16 4.492 1.81 4.168 1.80

32 2.545 3.19 2.386 3.13

64 1.701 4.78 1.582 4.73

9



7 Ax and ATx with vertex partitioning.

This section describes the steps involved in performing the matrix vector multiplications Ax and

ATx when vertices are assigned to processors and the interpartition boundaries are composed of

edge separators. The algorithms are presented once again by considering considering the example

shown in Figure 4. Under the partitioning scheme, rows of the matrix are assigned uniquely to

partitions. Thus the matrix is partitioned into two rectangular matrices of different sizes. Figure

6 illustrates the two components corresponding to Figure 3. Note that in this case, we do not have

partial entries since whole rows of the matrix are assigned to one processor or the other.

x

x

x

x

x x x

x x x

x x x

x x x x x x

X X X X 1

X X X

X X X X

ProcessorO Processor1

Figure 6: Decomposition of the matrix under the partitioning of Figure 4.

In what follows, it is assumed that the values of x at the corresponding image points are

not identical. This is again a reasonable assumption since usually the formation of x involves

communication (to obtain the values at the image points) followed by some computation. The last

step does not ensure that the original point and the image point hold the same value. There needs

to be another communication step to ensure this. The code for matrix vector product Ax is given

below:

Program mat_mul_vertex_part

Initialize : y(i) = 0, i = 1,n

call exchange (x,n) : exchanges x values at interpartition boundaries

do j-- 1, n

do 1 -- ia(j), ia(j+l)-I

y(j) -- y(j) % a(l)*x(ja(1))

enddo

enddo

end

The first step first communicates data at the interior boundary vertices. For each processor, this

step consists of sending data corresponding to a row of interior boundary vertices and receiving data

corresponding to the other row of interior boundary vertices. The two messages are not necessarily

of the same length. Now each processor has the data necessary for forming Ax for the components

that it owns. No more communication is necessary. Comparing with the previous section, we incur

nearly the same amount of computation and communication costs.

10



The code for computing ATx is given below:

Program t ranspose_mat_mul_vertex_part

Initialize : y(i) -- O, i -- 1,n

do j -- 1,n

do 1 -- ia(j),ia(j-t-1)-i

y(ja(l)) -- y(ja(1)) _- a(1)*x(j)
enddo

enddo

call exchange_sum (y,n) : adds y values at interpartition boundaries
end

First, each processor computes a portion of ATx. This step requires no communication since

each processor only operates on the rows and vector components assigned to it. However, at the

end of this step, the computation of ATx is not complete. There needs to be a communication step

(exchange_.sum operation) to obtain the correct results at the interpartition boundary vertices.

Comparing with the code for computing Ax we observe that ATx nearly involves the same amount

of computation and communication.

Once again results are presented from our implementation of Ax and ATx for various problem

sizes. Table 4 summarizes our results as the number of processors is varied for three problem sizes.

Elapsed times over ten trims are shown. Notice that Ax performs slightly worse than ATx.

Table 4: Performance of Ax and ATx on the Intel iPSC/860.

Problem size

(no. of vertices)

No. of procs. Ax

64

Time

(10.2 sees.)

Scaled

speedup

A'll x

Time

(10-2 sees.)

Scaled

speedup

843 1 1.626 1.00 1.493 1.00

4 0.546 2.98 0.512 2.91

6019 4 5.764 1.00 5.254 1.00

8 3.136 1.84 2.945 1.78

16 1.814 3.18 1.685 3.12

32 1.060 5.43 1.004 5.23

64 0.724 7.96 0.695 7.55

15606 8 7.899 1.00 7.359 1.00

16 4.274 1.84 3.939 1.86

32 2.367 3.34 2.188 3.36

1.404 5.63 1.339 5.50

8 Conclusions

In comparing Tables 3 and 4 we draw the following conclusions. Computing A T is no more expensive

than computing Ax; in fact, it is cheaper across the range of problem sizes considered on the Intel

iPSC/860. This, we believe, is due to the fact that the transpose problem involves a scatter

operation, whereas the matrix vector multiplication involves a gather operation. Recalling the

duality discussed earlier, our results on the Intel iPSC/860 indicate that the column-oriented data

11



structureperformsslightlybetterthan therow-orienteddatastructurewhencomputingthematrix-
vectorproductAx. Hammond [7] compares two algorithms for computing Ax using row-oriented

and column-oriented data structures for A. His implementation results on the CM-2 show that the

row-oriented data structure performs significantly better than the column-oriented data structure.

Partitioning the v_rtices of the original graph as opposed to partitioning cells yields better

results. In the case of the matrix vector multiplication, this is because cell partitioning involves

floating point operations in the communication phase due to the exchange..sum operation whereas

vertex partitioning does not. In the case of the transpose problem, both approaches require floating

point operations in the communication phase. Still, partitioning of vertices yields slightly better

results. Vertex partitioning is more general in that edge separators can always be found, for

example, even for complete graphs. Cell partitioning, on the other hand, is less general since it

requires vertex separators which, for instance, do not exist for complete graphs.

For general sparse matrices without a symmetric structure but with bounded connectivities,

the vertices of the directed graph should be partitioned. In order to ensure good computational

load balance, the sum of the total number of directed edges and the number of vertices should

be nearly equal across all partitions. This sum equals the total number of nonzero entries in the

matrix partitions. This may be difficult to ensure in practice. The interpartition boundaries then

consist of edge separators. The algorithms for Ax and ATx can then be applied easily. For dense

matrices we can still partition the vertices, assign rows of the matrix to processors and apply the

algorithms. In this case a complete exchange, wherein each processor broadcasts its component of

the vector to all other processors, is required. This can be done following the algorithms outlined

by Bokhari [8]. Assigning blocks of the matrix to processors following Fox et al. [9], on the other
hand, is more efficient for dense matrices. For random matrices, it pays to follow the strategy for

dense matrices if the number of nonzeros is large. If the number of nonzeros is small, partitioning

vertices and assigning rows of the matrix to processors is the method of choice.

References

[1] Y. Saad and M.H. Schultz. 1986. GMRES: A generalized minimum residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. star. Comput., 7(3), pp. 856-869.

[2] R. Fletcher. 1976. Conjugate gradient methods for indefinite systems. In G.A. Watson, Editor,

Proc. of the 6-th Biennal Dundee Conf. on Numerical Analysis. Springer-Verlag.

[3] P. Sonneveld. 1989. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J.

Sci. star. Comput., 10(1), pp. 36-52.

[4] A. Pothen, H. D.Simon, and K.-P. Liou. 1990. Partitioning sparse matrices with eigenvectors

of graphs. SIAM J. Mat. Anal. Appl., 11 , pp. 430 - 452.

[5] V. Venkatakrishnan, H.D. Simon, and T.J. Barth. 1992. A MIMD Implementation of a Parallel
Euler Solver for Unstructured Grids. The Journal of Supercomputing, 6, pp. 117-137.

[6] H. D. Simon. 1991. Partitioning of unstructured problems for parallel processing. Computing

Systems in Engineering, Vol. 2, No. 2/3, pp. 135-148,

[7] S. W. Hammond. 1992. Mapping Unstructured Grid Computations to Massively Parallel Com-

puters. Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY.

12



[8] S. It. Bokhari.1991.Multiphasecompleteexchangeon a circuit switched hypercube. In Proc.,

1991 International Conf. on Parallel Processing, vol. 1 (Aug 12-16), CRC Presss, Boca Raton,

Fla., pp. 1-525-I-529.

[9] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker. 1988. Solving Problems

on Concurrent Processors, Volume 1, Prentice Hall, NJ.

13


